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Large-Array Signal Processing for
Deep-Space Applications

C. H. Lee,1 V. Vilnrotter,1 E. Satorius,1 Z. Ye,1 D. Fort,1 and K.-M. Cheung1

This article develops the mathematical models needed to describe the key issues
in using an array of antennas for receiving spacecraft signals for DSN applications.
The detrimental effects of nearby interfering sources, such as other spacecraft trans-
missions or natural radio sources within the array’s field of view, on signal-to noise
ratio (SNR) are determined, atmospheric effects relevant to the arraying problem
developed, and two classes of algorithms (multiple signal classification (MUSIC)
plus beam forming, and an eigen-based solution) capable of phasing up the ar-
ray with maximized SNR in the presence of realistic disturbances are evaluated.
It is shown that, when convolutionally encoded binary-phase shift keying (BPSK)
data modulation is employed on the spacecraft signal, previously developed data
pre-processing techniques that partially reconstruct the carrier can be of great ben-
efit to array performance, particularly when strong interfering sources are present.
Since this article is concerned mainly with demonstrating the required capabilities
for operation under realistic conditions, no attempt has been made to reduce algo-
rithm complexity; the design and evaluation of less complex algorithms with similar
capabilities will be addressed in a future article. The performances of the candidate
algorithms discussed in this article have been evaluated in terms of the number of
symbols needed to achieve a given level of combining loss for different numbers of
array elements, and compared on this common basis. It is shown that even the
best algorithm requires approximately 25,000 symbols to achieve a combining loss
of less than 0.5 dB when 128 antenna elements are employed, but generally 50,000
or more symbols are needed. This is not a serious impediment to successful array-
ing with high data-rate transmission, but may be of some concern with missions
exploring near the edge of our solar system or beyond, where lower data rates may
be required.

I. Introduction

Antenna arraying is an attractive technique for improving the reception of weak signals. Signals
received simultaneously from different antennas are combined in phase, effectively creating an equivalent
larger aperture. This approach can be of great benefit to deep-space communications where the spacecraft
signal is severely attenuated as it travels across vast interplanetary distances. With the enhanced signal-
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to-noise ratio (SNR) obtained from an effectively larger aperture, arraying enables support of missions
whose signal level falls below the threshold of a single antenna. Alternatively, arraying can be used
to increase data return over that possible with a single antenna: for example, an array consisting of
four hundred 5-m antennas can replace the 70-m antenna at Goldstone, the largest one in the network,
without sacrificing any operational capabilities; in fact, the possibility of multibeaming, and graceful
degradation in the event of equipment failure, actually enhances the value of large arrays for the DSN.
The goal is to obtain a combined SNR at the array output of at least −5 dB (required for turbo codes),
which corresponds to a −31 dB SNR at each antenna of a 400-element array.

This article examines various arraying techniques, focusing on the very low SNR conditions commonly
encountered in deep-space communications. In addition to achieving high combined SNR under ideal
conditions, these algorithms should also be able to operate under practical conditions, such as atmospheric
turbulence over the array, and in the presence of spatially correlated interference from planets during
planetary encounters or other sources of radio frequency interference (RFI). Adaptive beam-forming
techniques provide a flexible system to combat channel impairment typically encountered during planetary
encounter reception, and also provide additional capabilities not available with single large antennas.

The main objective of arraying in the context of deep-space communications is to combine signals
coherently from many different antennas. For widely separated antennas, the received signal at each
site typically has different delay and Doppler signatures, which are dependent on the antenna’s position
and motion relative to the spacecraft. Differential delay and Doppler effects must be removed either
through predict-based modeling or through real-time estimation, so that all data streams can be combined
coherently.

Signals used for deep-space communications typically consist of a sinusoidal carrier modulated by a
square-wave subcarrier, and data symbols phase modulated onto the subcarrier. One commonly employed
technique for obtaining the relative phase of signals from the various antennas is by correlating each signal
with a reference signal, possibly consisting of the residual carrier obtained from the combined signal
of some well-calibrated portion of the array or reconstructed from the modulated data, as described
in Section III. Alternatively, covariance matrix techniques can be employed to estimate the combining
weight vector; however, this requires first determining all entries of a large covariance matrix. Finally,
the weighted signals from each antenna element are combined. Combining can be performed at various
levels in the system: at the symbol level, the carrier level, or across the entire spectrum occupied by the
modulated subcarrier.

This article is a survey of techniques applicable to the large-array deep-space communications problem.
The emphasis is on concept development and performance analysis rather than hardware complexity or
computational efficiency, although it is clear that these issues may have a significant impact on imple-
mentation, particularly with large arrays.

II. Array Model

This section presents a simple analysis of combined-array SNR for the case of a signal observed in the
presence of interference plus independent noise, using a linear array. Consider the case of N identical
antennas (each with its own receiver front-end, employing identical low-noise amplifiers (LNAs) with
identical noise temperatures) arranged on a line with identical spacing, observing a spacecraft signal plus
a noise-like interfering point source directly aligned with the spacecraft. The receiver of each antenna
adds an independent noise component to the received signal, composed of spacecraft signal plus interfer-
ence. Each receiver downconverts and samples the received waveform, converting it to complex baseband
samples. Combining weights are applied digitally to each channel, and the resulting weighted samples
are added together to produce the combined channel. Assuming source-direction combining weights, we
first determine what happens to the SNR of the combined channel as we increase the number of antenna
elements, N .

2



A. Normally Incident Source Fields: Point Interference along Line of Sight (LOS)

Let the complex baseband signal waveform, si(t), and background interference waveform, bi(t), from
the ith channel (electrical output of the ith antenna) be described as

si(t) = S(t) exp
(
j
(
ωt + ϕi(t)

))

bi(t) = B(t) exp
(
j
(
ωt + ϕi(t) + εP (t)

))



(1)

where S(t) and B(t) are complex envelopes of the signal and interference, respectively, and ω is a radian
frequency after downconversion within the passband of the baseband filter but not necessarily zero.
The complex envelopes of both the signal and the interference have complex time-varying coefficients to
account for possible wideband phase and amplitude modulation, but the common phase process ϕi(t), the
result of geometrical effects and atmospheric variations, is considered to be slowly varying as compared
to the modulation. The additional piston phase, εP (t), between the signal and the interference is due
to a path-length difference along the line of sight (LOS) between the spacecraft and the interference.
Note that the phase processes in the signal and interference are the same, due to the fact that spacecraft
and interference are along the same LOS and thus encounter identical delays. Let the complex baseband
noise waveform within the ith channel be denoted by ni(t). We assume zero-mean interference and noise
waveforms, with variances taken to be σ2

B and σ2
n, respectively. If the combining weights are taken to be

wi = exp
(
jϕ̂i(t)

)
, then the combined output is of the form

y(t) =
N∑

i=1

w̄i [si(t) + bi(t) + ni(t)]

=
N∑

i=1

{[
S(t) + B(t)ejεP (t)

]
exp

(
j
(
ωt + ∆ϕi(t)

))
+ ni(t) exp

(
− jϕ̂i(t)

)}
(2)

where the complex conjugate is denoted by the overhead bar and the phase difference is defined as
∆ϕ(t) ≡ ϕi(t) − ϕ̂i(t). With very good phase estimates, the difference phase can be neglected and the
combined output signal power is maximal, in which case Eq. (2) reduces to

y(t) ∼= N
[
S(t) + B(t)ejεP (t)

]
exp(jωt) +

N∑
i=1

ni(t) exp
(
− jϕ̂i(t)

)
(3)

The mean-squared powers of the combined signal and interference in a given bandwidth are N2E[|S(t)|2]
and N2E[|B(t)ejεP (t)|2] ≡ σ2

B , respectively, where E[·] denotes the time-average expected value. The
variance of the sum of independent noise components (multiplied by unity-magnitude complex weights)
is just the sum of the variances, namely Nσ2

n. Defining the SNR as the mean-squared value of the
combined signal divided by the sum of the mean-squared value of combined interference plus the variance
of combined noise yields

SNR ≡ N2E[|S(t)|2]
N2σ2

B + Nσ2
n

=
E[|S(t)|2]

σ2
B + σ2

n/N
(4)
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This shows that as long as σ2
n/N is much greater than the interference variance σ2

B , the SNR continues
to increase with increasing N :

lim
σ2

B
→0

SNR =
NE[|S(t)|2]

σ2
n

(5a)

However, as σ2
n/N becomes much smaller than σ2

B , the SNR approaches the constant value

lim
σ2

n/N→0
SNR =

E[|S(t)|2]
σ2

B

(5b)

The behavior of SNR with and without interference is illustrated in Fig. 1, where it is assumed that
the signal power is equal to the interference power, and that for a single antenna the variance of the
independent noise is 20 times (13 dB) greater than the signal power.

Note that without interference SNR = 1 is obtained with 20 elements and continues to increase with the
number of elements. However, interference of the same average power as the signal limits the achievable
SNR regardless of the number of elements used in the array. This example demonstrates the importance
of suppressing strong interference, whenever possible, in order to attain the full combining advantage of
the array: without interference suppression, the effective aperture of a large array can be significantly
reduced.

B. Normally Incident Source Fields: Interference Offset from Source

If the point interference source is not exactly along the LOS, but still within or near the array beam,
then spatial interference canceling techniques can be applied to mitigate the problem, as will be demon-
strated in Section IV. The following simple example illustrates the effect of spatial displacement between
source and interference on the SNR of the combined signal.

Let us suppose that the interfering point source is at an angle θ with respect to the LOS (source still
assumed to be at zenith for simplicity), and the weights are chosen to be optimum for the source only,
without regard to the interference. The weighted interference contribution from each antenna element
picks up an additional phase that depends on the linear distance of that element from some reference
point on the array, such as the geometrical center. This is shown in Fig. 2, which illustrates the linear
phase gradient picked up by the interference across the array when it is not along the LOS. For very small
angles typical of large arrays, the approximation sin(θ) ∼= θ is valid.

Fig. 1.  SNR as a function of the number
of antenna elements, N.
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Fig. 2.  Source and interference phase geometry across the array.
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In Fig. 2, the distance between two elements is taken to be d m, the wavelength is λ, and the additional
phase the interference picks up at a distance x from the origin is ϕI(x). If the combining weights are
selected to be optimum in the absence of interference, as before, then the signal adds up coherently but
the interference components receive a slightly different phase at each antenna element. Assume that N is
an odd number, and counting from left to right, we can express the combined output as

y(t) ∼= exp(jωt)

[
NS(t) + B(t)ejεP (t)

N−1∑
k=0

exp
(

jϕI

(
kd − d

2
(N − 1)

))]

+
N∑

i=1

ni(t) exp
(
− jϕ̂i(t)

)
(6)

Writing the exponent in the sum as ϕI(kd− (N − 1)d/2) = 2πθ[−kd + (N − 1)d/2]/λ, the sum inside the
brackets can be rewritten in closed form as

N−1∑
k=0

exp
(

jϕI

(
kd − d

2
(N − 1)

))
= exp

(
πθ(N − 1)d

λ

) N−1∑
k=0

exp
(−2πjkθd

λ

)

=
sin

(
πNθd

λ

)

sin
(

πθd

λ

) × ejψ (7)

where ψ is a residual phase. Now the variance of the interference becomes σ2
B sin2(πNθd/λ)/ sin2(πθ/λ),

which clearly varies with θ, but the signal and noise terms remain as before. Therefore, the SNR now
becomes a function of θ and is given by the expression

SNR =
E[|S̃(t)|2]

σ2
B

sin2(πNθd/λ)
N2 sin2(πθd/λ)

+
σ2

n

N

(8)
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First, consider the normalized variance due to the combined interference term, as a function of the angle θ.
Since the variance of interference is a function of angle, so is the total SNR. The variation of SNR with
offset angle is shown in Fig. 3 for the case of 20 elements 10 m apart, a wavelength of 1 cm, and with
independent additive noise variance 20 times greater for each element than either the signal or interference
power.

Note the existence of nulls in the normalized variance at approximately 2.5, 5, and 8 mdeg from the
LOS, corresponding to directions where the weighted interference waveforms add up destructively, result-
ing in complete interference cancellation. In addition, we observe that the larger the angular separation
between source and point interference, the smaller the envelope of the combined variance. The total
effect of interference plus additive noise on SNR is illustrated in Fig. 4 for the case of 20 antenna elements
separated by 10 m, with interference power equal to signal power, and with additive noise power 20 times
as great at each element.

We observe from Eq. (8) that with θ = 0 degrees and interference power equal to signal power,
and with additive noise power 20 times the interference power, the maximum combined SNR with a
20-element array is 0.5. However, as the angle between source and interference increases, the weighted
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Fig. 3.  Variance of combined point-source
interference, with an offset angle between the source
and the interference.
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interference variance decreases rapidly, until its effect becomes negligible for separations of 10 mdeg or
greater. The combined SNR then approaches its noise-dominated value of 1, consistent with the results
of Fig. 1. While this is only a 3-dB increase for a 20-element array and the parameters we have selected
for illustration purposes, it is clear that the improvement can be much greater for larger arrays: for a
100-element array, the improvement in SNR is 7.8 dB, whereas for a 1000-element array, it exceeds 17 dB.
Therefore, elimination or reduction of spatially close interference can result in substantial SNR gain with
large arrays. In Sections IV and V, we discuss algorithms that attempt to maximize SNR in the presence
of interference and evaluate their performance.

C. Extension of Linear Arrays to Simple Two-Dimensional Arrays

The results for linear arrays considered above can be extended directly to two-dimensional (2-D) arrays
by simply replicating the one-dimensional array orthogonal to its axis, each a specified distance from the
previous row, thus creating a two-dimensional array. If an N -dimensional linear array is replicated
N times, this results in an N -fold increase in both the signal and interference power collected by the
array. More generally, the resulting two-dimensional array may consist of Nx × Ny elements, arranged
over the x–y plane as shown in Fig. 5, where the elements are taken to be dx m apart in the x-direction and
dy m apart in the y-direction. The phase delays associated with a two-dimensional geometry are slightly
complicated due to the additional dimension, but can be attained systematically. Indeed, two-dimensional
arrays will be presented in Sections IV and V, where the multiple signal classification (MUSIC) and the
eigen algorithms are employed to combine the received signal and to mitigate noise and interferences.

III. Atmospheric Effects: Channel Modeling for the Large Array

This section presents the model used in evaluating the combining performance of a very large array.
Aside from local noise, as well as external interference from both terrestrial and extra-terrestrial sources
(e.g., planets), atmospheric turbulence can significantly alter the received signal phase across the array,
thereby degrading combining performance. This is especially problematic at the higher frequencies, i.e.,
at 17.3 GHz to 32 GHz (Ka-band). Here we consider phase distortions due to turbulence as it moves

x

Fig. 5.  Two-dimensional array formed by replication of a linear array.
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across the array. This is depicted in Fig. 6 for a uniform linear array of N antennas. The effect of
the turbulence is to introduce correlated, temporal signal phase fluctuations. For large arrays and short
wavelengths, λ, these fluctuations could severely limit the array’s combining performance.

In modeling and simulating the phase fluctuations, we utilize the following signal model:

sl(t) = Sl(t) · ejΦl(t), for 1 ≤ l ≤ N (9)

where Sl(t) is the received (baseband) signal waveform and Φl(t) denotes the total received signal phase,
which can be expressed as

Φl(t) =
2πld

λ
· sin θ + φinst

l (t) + φprop
l (t) (10)

and d is the distance between elements (Fig. 6).

The first term in Eq. (10), (2πld/λ) · sin θ, corresponds to the (ideal) phase associated with a plane
wave propagating across the array. The second term, φinst

l (t), is due to instrumentation effects [1] and
is not addressed here. The third term, φprop

l (t), is associated with turbulence effects and is the focus of
this section.

In evaluating array performance under turbulent atmospheric conditions, we make use of the phase
structure function [2]:

σ2
∆φ(r) ≡ E

[
|φprop

l − φprop
k |2

]
; r ≡ |rl − rk| (11)

where r is the distance between the lth and kth elements and E[·] again denotes time-average expected
value. From standard turbulence theory [2], we can express σ2

∆φ(r) in terms of turbulence parameters as
follows:

σ∆φ(r) =
(

2π

λ

)
· C · h4/3 ·

√
D

( r

h

)
(12a)

In Eq. (12a), h represents the height of the turbulence (nominally 1 km); C is the turbulence strength
parameter (nominally 2.4 × 10−7 m−1/3), and D is the (spatially) averaged refractivity:

Fig. 6.  N-element array geometry for atmospheric modeling.
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D(α) =
1

cos2 θ
·
∫ 1

0

∫ 1

0


Dχ




√
α2 + 2(z − z′)α tan θ +

(
z − z′

cos θ

)2

 − Dχ

(∣∣∣∣z − z′

cos θ

∣∣∣∣
)

 · dz · dz′ (12b)

where Dχ (β) = β2/3/[1 + (β · h/Γ)2/3] is the normalized refractivity structure function and Γ represents
the outer scale of the turbulence (nominally 3000 km). In Fig. 7, we present plots of σ2

∆φ(r) as well as
the associated two-element array combining loss as a function of the element separation at two different
frequencies: 8.2 GHz (X-band) and 25 GHz. As is seen, the turbulence has a dramatic effect on array-
combining performance at 25 GHz for element separations in excess of 300 m (combining loss >0.5 dB).

In modeling these effects, we utilize both the correlation and spectral data derived from turbulence
theory [2]. Specifically, the spatial correlation function is given by

Rφ(r) = 0.5{σ2
∆φ(∞) − σ2

∆φ(r)} ≈ 0.5




(
2π

λ

)2 C2h8/3

(
Γ
h

)2/3

cos2 θ
− σ2

∆φ(r)




(13)

and the associated spatial phase spectrum is given by

Sφ(q) = 2
∫ ∞

0

Rφ(r) · cos(2πqr)·dr (14)

where q is the wave number.

A plot of the spatial correlation function is presented in Fig. 8, corresponding to zenith pointing.
As can be seen, the phase fluctuations are highly correlated across the array; however, the phase struc-
ture function varies significantly over much shorter scales, as can be inferred from Fig. 8. These scales
(10 m–1 km) are typical of large-array inter-element distance [1]. The phase structure function and Sφ(q)
are related by

Fig. 7.  Two-element array combining loss due to turbulence.
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σ2
∆φ(r) = 4

∫ ∞

0

[
1 − cos(2πqr)

]
· Sφ(q) · dq = 8

∫ ∞

0

sin2(πqr) · Sφ(q) · dq (15)

We approximate Sφ(q) via a fully turbulent model [2] for wave numbers down to q ∼ 1/(10h):

Sφ(q) ∼ 0.016 ·
(

2π

λ

)2

C2 · h · q−8/3 rad2 − m; q > 1/10h (16)

To derive the temporal phase fluctuation model, we assume a frozen turbulence model wherein the
turbulent patches are transported by the wind across the array. Furthermore, identical temporal phase
fluctuation spectra, Pφ(f), are assumed at each antenna site. Based on this model, we can relate Pφ(f)
to the spatial spectrum Sφ(q) via

Pφ(f) =




1
V

· Sφ(q)|q=f/V , f ≥ V

10h

1
V

· Sφ(q)|q=1/10h , f <
V

10h

(17)

By truncating the spectrum for f < V/(10h) (1 mHz atV = 10 m/s and h = 1 km), we are ignoring very
low frequency components that are constant over the time scales of interest.

Discrete-time realizations of the fluctuating phase at each antenna output are first generated by dig-
itally filtering independent, white, zero-mean, Gaussian inputs, as depicted in Fig. 9. The digital filter
response H(f) is most conveniently generated in the frequency domain via the fast Fourier transform
(FFT):
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Fig. 9.  Generating independent phase correlation functions.

   f    (t )

SCALE FOR UNIT
OUTPUT VARIANCE

= antenna index

  (t  )   (t   ) = 0;

  (t  )
PfH (   ) = (   )

kk

H(k) =
√

Pφ(f)
∣∣∣∣
f=k·Fs/2N

, 0 ≤ k ≤ N

H(2N − k) = H(k), 1 ≤ k ≤ N




(18)

where Fs = sample rate > 4 · V/h. A sample digital filter response is depicted in Fig. 10; a sample
independent realization is depicted in Fig. 11.

The next step in generating phase realizations is to build in the spatial correlation properties. This is
done by first forming the spatial correlation matrix R from the spatial correlation function, i.e.,

[R]�k ≡ Rφ(�d − kd) (19)

and then constructing the square root of this matrix, i.e.,
√

R. The desired spatially correlated phase
realizations are then created by appropriately combining the independent phase realizations, as depicted
in Fig. 12. In this manner, the corresponding output phase data φprop

� (t) are guaranteed to have the
correct temporal and spatial statistics. Sample realizations are depicted in Fig. 13, corresponding to the
following parameters:

N = 20 antennas

d = 500 m

frequency = 25 GHz (Ka-band)

vertical incidence, θ = 0 deg

Fs = 100 V/h = 1 Hz

turbulence parameters:

V = 10 m/s

h = 1 km

Γ = 3000 km

Fs = 100 V/h = 1 Hz

As is seen in Fig. 13, although the phase fluctuations apparently have an extremely high degree of
correlation, the corresponding phase difference data obey the modeled spatial structure function.
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Fig. 10.  Typical digital filter response:  (a) frequency filter response
magnitude and (b) filter impulse response.
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Fig. 11.  Sample phase realization.
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The computer model presented herein accurately models the phase structure function computed from
pairs of elements. In particular it is shown that at the higher frequencies (25 GHz and above), significant
combining loss (0.5 dB or more) can occur for element baselines in excess of 300 m due to atmospheric
turbulence. However, phase realizations generated by the computer model reveal that these effects occur
at very low frequencies compared to the signal bandwidths of interest. Thus, they potentially can be
compensated for via smart adaptive array processing. Nevertheless, these effects must be taken into
account in developing combining algorithms for large-array antennas.

IV. MUSIC Algorithm and Beam Forming

Spatially correlated interference poses challenges to the array-combining problem. To address the is-
sues of identifying the intended and interference signals, and, furthermore, to suppress these interference
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Fig. 13.  Correlated phase realizations.
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signals, direction-finding algorithms and interference-suppression techniques are combined and studied.
In particular, high-resolution direction-finding algorithms are focused on in this section. They do not
have the problem associated with most of the conventional Fourier transform-based approaches, which
are inherently limited by relatively high side lobe and, therefore, lower resolution.

High-resolution eigenstructure-based methods incorporate both amplitude and phase information to
achieve high-resolution angle-of-arrival (AOA) estimates for multiple incident sources. These techniques
stem from Schmidt’s multiple emitter location and signal parameter estimation (MUSIC) algorithm [3].
To illustrate the essential features of the MUSIC algorithm, we consider an N -element array (assuming
complex baseband data format) with up to L different signal sources incident upon the array at AOAs
θ1, · · · , θL. Define the array manifold, A(θ), which is an N × L matrix comprising the vectors of array
responses, a(θi), modeled or measured during calibration: A(θ) = [a(θ1) a(θ2) · · · a(θL)]. Furthermore,
define S(t) to be the L × 1 vector of radiated signals incident upon the array at time t, and n(t) to be
the N × 1 vector of receiver measurement noise. It is assumed in the following that the components of
n(t) are zero-mean and independent noises with variance σ2

n. The received array signal vector can then
be written as

X(t) = A(θ) · S(t) + n(t) (20)

The direction-finding problem is to estimate the unknown angles of arrival, θ1, · · · , θL, given X(t), t =
1, · · · , M , where M is the number of received signal samples.

Given that the array response vectors are orthogonal to the eigenvectors spanning the noise subspace
[3], MUSIC uses the following procedure for estimating the AOAs: first form the sample covariance
matrix R and perform an eigen-decomposition for Hermitian matrices, i.e.,

R =
1
M

M∑
t=1

X(t)XH(t) = V · Λ · V H (21)
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where H denotes the conjugate transpose operation, Λ = diag(λ1, λ2, · · · , λN ), with the eigenvalues
satisfying λ1 ≥ λ2 ≥ · · · ≥ λN , and V = [
v1
v2 · · ·
vN ] are the corresponding orthonormal eigenvectors
of R. The unitary matrix of eigenvectors V can be decomposed further as V = [Vs Vn], where the columns
of Vs comprise the eigenvectors corresponding to the L largest eigenvalues of R (the signal subspace),
and where Vn contains the remaining (noise) eigenvectors. Next the inverse MUSIC spectrum, F (θi), is
formed via

F (θi) ≡
1

‖V H
n · a(θi)‖2 (22)

Since the array response vectors a(θi) are orthogonal to the eigenvectors spanning the noise subspace Vn,
it can be seen that the AOA estimates will occur at those θi’s that satisfy the equation

∥∥V H
n · a(θi)

∥∥2 = 0,

yielding the AOA estimate θ̂ = arg max
θ1

{F (θi)}. The method can be readily extended to two-dimensional
arrays, as illustrated in the following.

As an example, Fig. 14 presents the results of applying MUSIC to a one-dimensional array configu-
ration (10-element uniform linear array with half-wavelength spacing) with an incident signal and three
interference plane wave components (to emulate planetary interference). The power in all signal and
interference components is assumed to be equal in this example, and the SNR per element is −15 dB.
Figure 14(b) is the array response without adaptive interference cancellation. The three vertical straight
lines indicate the location of the interfering sources. The MUSIC algorithm is first used to identify
the desired signal, impinging on axis, followed by identification of the three interference signals. Once
these AOAs have been identified, an interference cancellation technique, such as the linear constrained
minimum-variance (LCMV) algorithm or the side lobe canceler, can be used to suppress the undesired
interference sources. The antenna pattern presented in Fig. 14(a) is an example of the result from using
LCMV.

This approach can be further extended to form a continuous area of nulls in the spatial domain.
In Fig. 15, a large planetary interference source has been modeled as a series of clustered distributed
sources (again with the same power in the signal and interference components and approximately −15 dB
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Fig. 14.  MUSIC and adaptive cancellation: (a) with three-null
cancellation and (b) without cancellation.
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Fig. 15.  MUSIC and zone cancellation: (a) with multiple-null (zone)
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SNR per element). Provided the number of antenna elements in the array has a sufficient number
of degrees of freedom, typically on the order of 2 to 3 times that of the number of interferers, the
adaptive cancellation technique, together with MUSIC, can be very effective for mitigating planetary
interference. In such cases, large arrays can provide significant advantages over single-aperture antennas
for multibeam applications, such as improved SNR through suppression of planetary noise, together with
robust operation and improved availability.

When using the MUSIC algorithm, it is important to differentiate between the intended signal and
spatially correlated interference signals. A JPL-developed generalized pre-processor algorithm [8,9] can be
used to identify the intended signal and has been incorporated into the simulations. The concept presented
there originated from the phase estimation problem under conditions of very low SNR characteristic of
distant spacecraft, emergency-mode communications, and reception of turbo-coded signals where symbol
SNRs of −6 dB are routinely encountered [10]. This technique also can provide significantly improved
phase estimates for the individual elements of a large antenna array.

As an example of operation with a 20-element linear array, Fig. 16 shows the MUSIC pseudo-spectrum
of simulated spacecraft and planetary sources. Figure 17 shows the corresponding results after the pre-
processor has been turned on. The incorporation of low SNR generalized pre-processor structures for
coded telemetry clearly enables greatly enhanced identification of spacecraft signals in the presence of
spatially overlapping interference when using the MUSIC algorithm.

The approach of combining high-resolution direction finding using MUSIC and interference cancellation
using beam forming can be extended from a one-dimensional to a two-dimensional planar array. Figure 18
illustrates the two-dimensional inverse MUSIC spectrum of an 8-by-8 square planar array (half-wavelength
vertical and horizontal spacing between elements). The signal of interest arrives from (θ = 50 deg,
φ = 0 deg), and the interfering signal arrives from (θ = 10 deg, φ = 0 deg), where θ is the angle from
the normal to the array and φ is the corresponding azimuthal angle. These two signals are of equal
power (under noiseless conditions) and can be readily identified in the two-dimensional inverse MUSIC
spectrum. Figure 19 is a regional top view of the inverse spectrum where the two local peaks are clearly
formed at the two impinging directions.
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Given the angle of arrival estimates, two-dimensional adaptive beam-forming techniques can be carried
out to derive the optimum combining weights for the planar array. The two-dimensional antenna pattern
with these weights is plotted in Fig. 20. In this example, the signal of interest comes from (θ = 50 deg,
φ = 50 deg), and four interfering signals impinge from (θ = 20 deg, φ = 20 deg), (θ = 20 deg, φ = 15 deg),
(θ = 15 deg, φ = 20 deg), and (θ = 15 deg, φ = 15 deg). The four point sources form a square, which
models a planar interfering source. The beam-forming algorithm is able to null out the interfering sources,
as seen in Fig. 20 as well as in the regional top view of Fig. 21. The original beam pattern of the planar
array is shaped to enhance the signal of interest while simultaneously nulling the interfering signals.

The communications performance of the MUSIC algorithm with beam forming can be assessed in
terms of the combining loss associated with the output signal of the array, that is, the loss compared
to a perfectly phased array of antennas. The results using this method are displayed in Fig. 22. Only
signal plus receiver noise is considered in this example, with no additional interference signals. The
number of symbols within a block ranges from 5000 to 60,000 for each process. The combined output
symbol SNR is fixed at −7 dB, and the received symbol SNR at each receiver is −(7+10 log10 N) dB. Thus,
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the larger the array size, the smaller the received symbol SNR at each receiver. This accounts for the
relatively large combining loss for the larger arrays. It can be seen that, when the number of symbols
exceeds 40,000 (where log10(40, 000) = 4.6), less than 0.5-dB combining loss can be achieved with arrays
of 128 or fewer elements.

V. Eigen-Based Combining Algorithms

Traditional eigen-based combining algorithms (see a detailed survey in [4]) for large-array antennas
require forming the covariance matrix of the observables between the array elements and solving an
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eigenvalue problem. While they yield the optimal combining weights, these methods require a signal
correlator, which for a large-sized array can be time consuming and expensive. In this section, we
investigate two combining approaches: one is designed to reduce the number of operations required to
attain the optimal weight by means of iteration and the other is designed to find the optimal weight that
mitigates strong interferences and noise. Mathematical frameworks, numerical algorithms, and computer
simulations for both techniques will be presented.
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The array model is similar to that discussed in Section II, that is, there are N identical receivers in a lin-
ear array separated by the same distance. We denote by ϕi(t) the phase angle between the spacecraft and
the ith antenna. Each antenna receives a signal S(t) from the spacecraft as well as K other point-source
interferences

{
B1(t) exp(j(ϕi(t) + εP

1 (t))), B2(t) exp(j(ϕi(t) + εP
2 (t))), · · · , BK(t) exp(j(ϕi(t) + εP

K(t)))
}
,

each of which is directly behind the spacecraft and differs in phase by εP
k (t) for some k = 1, 2, · · · , K.

Independent white Gaussian noise waveforms, {ni(t)}N
i=1, also are added to the observables. Furthermore,

we assume that the point-source interference and the internally generated receiver noise are uncorrelated.
Based on this model, the ith antenna generates the IF waveform

Xi(t) = si(t) +
K∑

k=1

bi(k) + ni(t) (23)

where si(t) = S(t) exp(jϕi(t)) and bi(k) = Bk(t) exp(j(ϕi(t) + εP
k (t))). We remark here that the algo-

rithms in this section belong to a class of blind combining techniques and that no spatial information of
the spacecraft and the ground receivers is needed. The observables {Xi(t)}N

i=1 generated in Eq. (23) are
merely for simulation purposes. By denoting the undesired components by zi(t) ≡

∑K
k=1 bi(k) + ni(t),

Eq. (23) can be rewritten as

Xi(t) = si(t) + zi(t) (24)

Our goal is to find an optimal set of weights {wi}N
i=1 so that the combined output signal

Y (t) =
N∑

i=1

w̄iXi(t) (25)

achieves certain objectives. Particular objectives considered in this section include (1) maximizing the
combined output power (MCOP) and (2) maximizing the combined output signal-to-interference plus
noise ratio (MCOSINR). Next, we will discuss the mathematical frameworks for these objectives as well
as the details of our proposed approaches.
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A. Maximizing the Combined Output Power (MCOP)

As its name indicates, the MCOP algorithm is designed to find a normalized set of weight that
maximizes the combined time-average output signal power, which we define as E[||Y (t)||2], where E[·]
again denotes the time-average expected value operator. It can be shown easily that the combined output
signal power can be expressed in the quadratic form of the covariance matrix, i.e.,

E[||Y (t)||2] = E

[∣∣∣∣
∣∣∣∣

N∑
i=1

w̄iXi(t)
∣∣∣∣
∣∣∣∣
2
]

= 
wH

(
1
M

M∑
m=1

Xi(m)XH
i

(m)

)

w = 
wHR
w (26)

Taking advantage of the eigen decomposition of the covariance matrix R defined in Eq. (21), any arbitrary
set of unit weight 
w can be written as


w =
N∑

i=1

αi
vi = V 
α (27)

where 
α = [α1, α2, · · · , αN ]T and
∑N

i=1 |αi|2 = 1.

Putting the combined output power, Eq. (26), in normalized form, we have

E
[∣∣∣∣Y (t)

∣∣∣∣2] = (V 
α)HV ΛV H(V 
α) = 
αHΛ
α =
N∑

i=1

λi|αi|2 ≤ λ1 (28)

Therefore, the weight that yields the largest combined output power is the eigenvector that corresponds to
the largest eigenvalue. Traditional procedures for finding the dominant eigenvector include the following:

(1) Form the covariance matrix R.

(2) Solve the eigen problem R
v = λ
v and sort the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λN .

(3) Set 
wopt = 
v1.

Note that the above approach solves for all eigenvectors, while it uses only the dominant one. Therefore,
a more efficient technique is needed, which turns out to be a well-known numerical algorithm called
the power method [5]. The power method finds iteratively and solely the dominant eigenvector and is
implemented as follows:

(1) Form the covariance matrix R.

(2) Start with 
w(0) = [1, · · · , 1]T /
√

N and compute successively 
w(k) = R
w(k−1)/||R
w(k−1)||.
(3) Set 
wopt = 
w(k).

Note that while it eliminates many of the unnecessary computations of non-dominant eigenvectors, the
power method requires the formation of the covariance matrix R. As a result, the total number of floating-
point operations is N(N + 1)M/2 + N2I, where again N is the number of antennas, M is the number of
signal samples within a received block, and I is the number of iterations. To reduce further the number
of floating-point operations and to remove the requirement for forming the covariance matrix, we propose
the following algorithm, which we call the matrix-free power method:
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(1) Start with an initial guess 
w(0) = [1, · · · , 1]T /
√

N .

(2) Compute successively 
w(k) = 
u(k)/||
u(k)||, where

u
(k)
j = E

[
Xj(t)Ȳ (t)

]

Y (t) =
N∑

i=1

w̄
(k−1)
i Xi(t)




(29)

(3) Set 
wopt = 
w(k).

With simple algebraic manipulations, one can see that u
(k)
j in Eq. (29) is exactly R
w(k−1). The number

of floating-point operations is reduced to N · M · I. The convergence of the power method is dictated
by the separation of the signal power to the noise power and the number of iterations is bounded, in the
worst-case scenario, by N . Moreover, the number of iterations may be large for the first block of symbols,
but, in most cases, I << N, M .

Since the MCOP approach maximizes the combined output power, when undesired signals are present
and are as strong as the desired signal, the MCOP approach amplifies both the desired and undesired
signals. It appears that this approach is most suitable when there are no interfering sources present. In our
first simulations, we assume that the observables consist of only signal plus internally generated receiver
noise and that there are no interfering sources from nearby planets. In fact, this particular approach
has been studied by Hackett [6], where he proposed this technique as a means to adaptively separate
the communications signals in an antenna array. He found the optimal weight by forming the covariance
matrix of the observables and used the standard eigen technique to find the dominant eigenvector.

In our simulations, we assume that the antennas are 20 m apart and the thermal noise at each receiver
is broadband. The combined output symbol SNR is fixed at −7 dB, and the received symbol SNR at
each receiver is −(7 + 10 log10 N) dB. The number of symbols within a block ranges from 5000 to 60,000,
as in the MUSIC approach discussed in Section IV. The results using the traditional eigen method are
displayed in Fig. 23.

We find that the eigen-based combining technique can successfully increase the output SNR and that,
if the input symbol SNR is small, the number of symbols within a processing block must be sufficiently
large to avoid severe combined symbol SNR degradation. To justify numerically the proposed matrix-free
power method, the same scenario as that used for the traditional eigen method is simulated, with the
results depicted in Fig. 24. Here the loss fluctuates slightly for a small input symbol SNR and a small
number of symbols per processing block. As expected, the combined symbol SNR for the traditional eigen
and the matrix-free power methods compare well when the number of symbols exceeds 50,000.

B. Maximizing the Combined Output Signal-to-Interference Plus Noise Ratio (MCOSINR)

The second approach (MCOSINR) is designed to maximize the combined output signal-to-interference
plus noise ratio (SINR), which we define as

SINR =
E

[∣∣∣∣∣∣ N∑
i=1

wisi(t)
∣∣∣∣∣∣]2

E

[∣∣∣∣∣∣ N∑
i=1

wizi(t)
∣∣∣∣∣∣2] (30)
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Fig. 23.  Combined symbol SNR loss versus the number of
symbols using the eigen technique in maximizing combined
output power.
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Fig. 24.  Combined symbol SNR loss versus the number of
symbols using the matrix-free power method.
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The SINR in Eq. (30) can be expressed as

SINR =

wHE

[
s(t)sH(t)

]

w


wHE [z(t)zH(t)] 
w
=


wHR
w


wHRzz 
w
+ 1 (31)

where R and Rzz are the covariance matrices of the observables and the interference plus noise, respec-
tively. We also emphasize here that the covariance matrix R is readily available from the observables
{Xi(t)}N

i=1. However, the covariance matrix of the interference plus noise, Rzz, has to be constructed
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separately: for example, they could be obtained at a frequency band different from the modulated signal.
In other words, for each received observable in Eq. (24), we could simultaneously measure

z′i(t) =
K∑

k=1

B′
k(t) exp

(
jϕi(t) + εP

k (t)
)

+ n′
i(t) (32)

where

B′
k(t) 	= B′

k(t)

n′
i(t) 	= ni(t)


 for each t (33)

but their statistics, the time-average expected values, are the same, i.e.,

Rz′z′ = Rzz (34)

As a result, from now on we will refer to Rz′z′ as Rzz. It should be pointed out that in the simulations
the approximated interfering sources B′

k(t) and the internal noise n′
i(t) are assumed to be white Gaussian

processes.

As shown in [7], the optimal weight that yields the largest SINR in Eq. (31) is the dominant eigenvector

wdom of the matrix R−1

zz R. Numerical computation of the optimal weight, which we refer to as the unified
eigen approach, is implemented similarly to the power method, as follows:

(1) Form the matrices R, Rzz, and R−1
zz R.

(2) Start with 
w(0) = [1, · · · , 1]T /
√

N and compute successively 
w(k) = R−1
zz R
w(k−1)/

||R−1
zz R
w(k−1)||.

(3) Set 
wopt = 
w(k).

While the unified eigen approach provides the foundation for achieving the optimal signal-to-interference
plus noise ratio, its implementation requires intensive computation, particularly in forming and inverting
large-sized matrices. As a consequence, we investigate an additional algorithm, which we call the matrix-
free power method plus pre-processing (see the Appendix)—namely, the matrix-free power combining
algorithm is implemented on pre-processed data. This algorithm makes use of the data pre-processing
technique described in the appendix to reconstruct the carrier, thus enabling narrowband operation to
reduce broadband interference. Two cases for the MCOSINR algorithms are investigated.

Case 1: One Interfering Source. Here the interfering source is directional and is 10 mdeg from the
signal source. Numerical results for both the unified eigen and the power-plus-pre-processing approaches
are displayed in Figs. 25 and 26.

Case 2: Three Interfering Sources. Three interfering sources are at ε1(t) = −15, ε2(t) = 10,
and ε3(t) = 20 mdeg. Numerical results for both the unified eigen and the power-plus-pre-processing
approaches are displayed in Figs. 27 and 28.

It can be seen that power plus pre-processing requires many fewer symbols to achieve a given perfor-
mance level in terms of combining loss than do the eigen-theory techniques, but that it also requires the
additional processing capability needed to reconstruct the carrier from the modulated signal waveforms.
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Fig. 25.  Combined symbol SNR loss versus the number of
symbols using the unified eigen technique.
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Fig. 26.  Combined symbol SNR loss versus the number of
symbols using the matrix-free power method plus the pre-
processing algorithm.
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For example, it is demonstrated in Figs. 25 through 28 that, with 128 antennas and either one or three
interfering sources, a combining loss of approximately 1 dB can be achieved with 10,000 symbols when
pre-processing is employed with the power method, but as many as 50,000 symbols are required when
using the unified eigen approach which, however, does not require pre-processing even in the presence of
interference.

VI. Conclusions

The problem of determining the optimal weights for an array of antennas receiving low-power signals
from space in the presence of interference has been addressed. The detrimental effects of directional
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Fig. 27.  Combined symbol SNR loss versus the number of
symbols using the unified eigen technique.
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Fig. 28.  Combined symbol SNR loss versus the number of
symbols using the matrix-free power method plus the pre-
processing algorithm.
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interference on receiver performance have been demonstrated, and candidate techniques capable of maxi-
mizing the signal-to-interference plus noise ratio, or SINR, have been described and evaluated. In addition,
it was shown that carrier reconstruction algorithms developed earlier can be employed to help identify
spacecraft signals in the presence of strong interference or clutter, and that they generally help reduce the
effects of broadband interference. A detailed model of atmospheric effects on the phase of the received
signal over the array has been developed and used to generate “realistic” data to help evaluate the various
weight-optimization techniques via simulations.

Two different classes of optimum array-combining algorithms were applied to the general deep-space
array communication problem, focusing on the very low received SNR conditions commonly encountered
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over the deep-space channel. It was shown that both the subspace-based MUSIC algorithm and the
class of eigen-theory algorithms are strong candidates for this application, with capabilities that provide
for signal and interference identification as well as interference suppression to maximize the combined
signal-to-noise ratio.
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Appendix

Generalized Pre-Processor

The use of data pre-processors for reconstructing the carrier from binary-phase shift keyed (BPSK)-
modulated block and convolutionally coded signals has been described in previous articles [8,9]. The
basic system concept is as follows: The data sequence first is estimated using a data pre-processor, after
which the estimated data sequence is multiplied by a delayed version of the sampled waveform. Even
if the data estimates contain some errors, the original data modulation will be largely removed, leaving
only a residual error sequence on the carrier with a necessarily lower transition rate than the original
signal; therefore, this partially reconstructed carrier typically occupies a much narrower bandwidth than
does the original data modulation.

A maximum-likelihood block-decision approach for block-encoded sequences of BPSK symbols has
been described in [10], where it was demonstrated that this approach also can be applied to convolutional
codes, enabling the generalization of the pre-processor structure to most encoding schemes employed
or contemplated by the DSN, including turbo codes. Two block-decoding schemes for convolutionally
encoded data have been simulated. First, decoder performance was bounded by assuming that the state
of the registers is known after each input block. This is a useful bound, but not a practical decoding
scheme because in reality the states are not known, and hence must be estimated along with the code-
words. Incorrect decoding results in loss of state information, which means the pre-processor generates
the wrong codeword set for correlation with the received signal. This, in turn, leads to incorrect decoding
of subsequent codewords, with little chance of ever recovering the correct state. This lower bound on
pre-processor symbol-error rate is illustrated in Fig. A-1 by the curve labeled “pre-processor (known state
bound)” and represents a performance bound that is generally not attainable in practice. The second
scheme makes no attempt to estimate the state of the encoder; hence, the pre-processor must correlate
the received waveform with all possible codewords associated with every state. Symbol-error performance
for this approach is also shown in Fig. A-1 as the curve labeled “pre-processor (all states).” Its symbol-
error performance is approximately 1.5-dB worse than that of the known-states bound. Finally, the
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symbol-error performance of a conventional Viterbi decoder of the type generally used in the DSN also
has been included for comparison, labeled “Viterbi decoder” in Fig. A-1. In order to evaluate the Viterbi
decoder in the same framework as the pre-processor, it was operated with a fixed delay of 8 symbols.
Symbol-error performance of the Viterbi decoder operated in this mode is seen to be worse than that of
the block pre-processor at SNRs less than −4 dB. Thus, when channel dynamics dictate operation with
relatively short delays, the block pre-processor appears to have a clear advantage over the conventional
Viterbi decoder in the region of very low signal-to-noise ratios.
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